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The asymmetric catalytic Mannich reaction is a powerful
synthetic method for the preparation of enantioenrichedâ-amino
carbonyl molecules, an important class of chiral building blocks
of pharmaceutically relevant compounds.1,2 Due to its atom-econ-
omy, the direct asymmetric Mannich reaction has been receiving
increasing attention.3-7 Of diastereo- and enantioselective organo-
catalytic direct Mannich reactions,syn-selective variants have been
obtained for a wide scope of both imine acceptors and ketone/
aldehyde donors.3,6 Recently,anti-selective direct Mannich reactions
of N-PMP-protectedR-imino esters with simple ketones and alde-
hydes have also been performed with excellent diastereo- and enantio-
selectivities using reasonably designed chiral organocatalysts.7a-d

However, there has been no report of ananti-selective asymmetric
direct Mannich reaction of an aldimine other thanR-imino ester
with a simple ketone7e and an organocatalytic direct asymmetric
Mannich reaction using an aromatic ketone as the donor. Neverthe-
less, the organocatalysts so far used for direct Mannich reactions
involving simple ketones as donors are designed on the basis of
enamine catalysis6,7 and require a high loading (10-30 mol %)
with the exception of those designed by Maruoka and Barbas.7b-d

Chiral phosphoric acids have currently been catalysts of choice
for the activation of imines, leading to a number of asymmetric
additions of various nucleophiles to imines.8,9 However, the chiral
phosphoric acids were only investigated for catalyzing an indirect
Mannich reaction9b,dand a direct Mannich reaction of aâ-dicarbonyl
compound withN-Boc-protected aldimines, in which simple ketones
were not reported as Mannich donors.9a The mechanistic proposal
for the Brønsted acid-catalyzed Mannich reaction10 indicates that
a carbonyl compound possessingR-hydrogens will enolize in acid,
and the formed enol will attack the protonated aldimine generated
in situ from an aldehyde and a primary amine in the presence of
the acid. Thus, we speculated that chiral phosphoric acids were
potentially capable of promoting asymmetric direct Mannich
reaction viaTS-1.11 Herein, we will report our findings that a
catalytic amount of a chiral phosphoric acid is sufficient to promote
an anti-selective direct asymmetric Mannich reaction of cycloke-
tones with high diastereo- (anti/syn) 98:2) and enantioselectivity
(up to 98% ee) and Mannich reactions between aldimines and
aromatic ketones with fairly good enantioselectivity.

The primary experiment of a one-pot direct Mannich reaction
between cyclohexanone (3a), para-methoxylphenylamine (PMP-

NH2), andpara-nitrobenzaldehyde was carried out with 5 mol %
of 1a in CH2Cl2. As expected, the reaction was successful, affording
the product6a in 49% yield. To our delight,anti-6a was favorably
formed with 72/28 dr and 50% ee. The survey of the H8-BINOL-
and BINOL-based phosphoric acids revealed that2a turned out to
be promising catalysts in terms of yield, diastereo-, and enantiose-
lectivity (Table 1, entries 1-8). The enantioselectivity increased
to 84% ee when the reaction was conducted in toluene (entry 9).
The structure of the amine component has a considerable effect on
the reaction (see Supporting Information). Accordingly, the employ-
ment of phenylamine further enhanced the enantioselectivity and
reactivity (entry 10). Importantly, 0.5 mol % of2aor 1eis sufficient
to catalyze the reaction, furnishinganti-Mannich product6b with
high enantioselectivity (90% ee with2a and 92% ee with1e) and
fairly good diastereoselectivity (entries 11 and 12).

The optimized protocol was then expanded to a wide variety of
aldehydes and cyclohexanone derivatives (Table 2). Direct Mannich
reactions between the various aldehydes, phenylamine, and cyclo-
hexanone proceeded smoothly in the presence of as little as 0.5
mol % of 1e to yield anti-selective Mannich adducts mostly with
excellent enantioselectivities (entries 1-9). The stereochemical
outcome depends significantly on the electronic properties of the
substituent on benzaldehyde. Electron-donating groups had a
deleterious effect on the enantioselectivity (entry 6). An aliphatic
aldehyde smoothly underwent the Mannich reaction with 84/16 dr
and 75% ee (entry 7). Tetrahydropyran- andN-Boc-protected
piperidin-4-ones (3b and3c) are both highly reactive toward the
imine generated in situ frompara-nitrobenzaldehyde and phenyl-
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Table 1. Screening Catalysts and Optimization of Reaction
Conditionsa

entry catalyst (mol %) 4 solvent yield (%)b dr (anti/syn)c ee (%)d

1 1a (5) 4a CH2Cl2 49 72/28 50
2 1b (5) 4a CH2Cl2 91 80/20 67
3 1c (5) 4a CH2Cl2 74 65/35 21
4 1d (5) 4a CH2Cl2 48 81/19 53
5 1e(5) 4a CH2Cl2 >99 88/12 63
6 2a (5) 4a CH2Cl2 87 82/18 70
7 2b (5) 4a CH2Cl2 93 84/16 64
8 2c (5) 4a CH2Cl2 90 90/10 69
9 2a (5) 4a toluene 93 80/20 84

10 2a (5) 4b toluene >99 72/28 88
11 2a (0.5) 4b toluene 90 89/11 90
12 1e(0.5) 4b toluene 90 82/18 92

a Reaction conditions: a solution of 4-nitrobenzaldehyde (0.2 mmol),
cyclohexanone (2.0 mmol),4aor 4b (0.22 mmol), and a catalyst in a solvent
(5 mL) was stirred at 0°C for 48 h.b Isolated yield.c Determined by1H
NMR. d Enantiomeric excess ofanti-product was determined by HPLC.
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amine, leading to the formation ofanti-Mannich products with 90
and 91% ee, respectively (entries 10 and 11). Tetrahydrothiopyran-
4-one (3d) is seemingly less reactive than its analogues. Conse-
quently, 2 mol % of catalyst2a was required to ensure a complete
Mannich reaction (entries 12-18). Excellent enantioselectivities (up
to 98% ee) resulted from Mannich reactions involving tetrahy-
drothiopyran-4-one. The diastereoselectivity was highly dependent
on the structures of both the aldehydes and the cyclic ketones.
Accordingly, diastereomeric ratios ranging from 77/23 to 98/2 were
observed. The relative and absolute configurations of the two
contiguous stereogenic carbons in6s were determined by X-ray
crystallographic analysis (see Supporting Information).

Acyclic ketones were also examined as Mannich donors (Table
3). Fairly good enantioselectivities were afforded for an aliphatic
ketone in the presence of2b (entries 1 and 2).12 Importantly,
aromatic ketones such as7b,ccould smoothly occur in the Mannich
reaction with good enantioselectivities catalyzed by 5 mol % of
phosphoric acid2c (entries 3-6). To the best of our knowledge,
this is the first organocatalytic asymmetric Mannich reaction using
aromatic ketones as donors.13

In summary, we have developed a Brønsted acid-catalyzed direct
asymmetric Mannich reaction. The presence of 0.5 mol % of the
phosphoric acid1eor 2 mol % of2a could effectively catalyze the

reactions of a range of aldimines with cyclohexanone derivatives,
giving anti-â-amino carbonyls in high yields with excellent
enantioselectivities (up to 98% ee) and high diastereomeric ratios
(up to 98/2 dr). The one-pot Mannich reaction involving aromatic
ketones catalyzed by2cgaveâ-amino carbonyls in high yields with
fairly good enantioselectivities.
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Table 2. anti-Selective Three-Component Direct Asymmetric
Mannich Reactions with Phosphoric Acid 1e or 2aa

entry X R 6 yield (%)b dr (anti/syn)c ee (%)d

1 CH2 4-CF3C6H4 6c 90 77/23 94
2 CH2 4-CNC6H4 6d 92 86/14 91
3 CH2 4-BrC6H4 6e 99 83/17 91
4 CH2 4-ClC6H4 6f 99 85/15 93
5 CH2 4-FC6H4 6g 67 81/19 95
6 CH2 4-MeC6H4 6h 84 81/19 80
7 CH2 (CH2)2CH 6i 83 84/16 75
8 CH2 3,5-Br2C6H3 6j 91 89/11 95
9 CH2 3-FC6H4 6k 94 84/16 89

10 O 4-NO2C6H4 6l 94 92/8 90
11 BocN 4-NO2C6H4 6m >99 80/20 91
12 S 4-NO2C6H4 6n 97 92/8 95e

13 S 3,5-Br2C6H3 6o 90 97/3 98e

14 S 3,5-F2C6H3 6p 85 98/2 92e

15 S 4-CF3C6H4 6q 82 92/8 95e

16 S 4-ClC6H4 6r 90 93/7 92e

17 S 3-Cl-4-FC6H3 6s 79 94/6 (100/0)f 83e (>99)f

18 S 2-thiophenyl 6t 74 89/11 91e

a The reaction was performed on 0.4 mmol scale for 48 h.b Isolated
yield. c Determined by1H NMR. d Enantiomeric excess ofanti-product was
determined by HPLC.e Catalyzed by 2 mol % of2a. f After recrystallization.

Table 3. Direct Asymmetric Mannich Reactions of Acyclic
Ketonesa

entry 7 (R1) R2 R3 8 yield (%)b ee (%)c

1 7a (CH3) CO2Me 4-NO2C6H4 8a 61 86d

2 7a (CH3) CO2Me 4-MeC6H4 8b 76 72d

3 7b (Ph) H 4-NO2C6H4 8c 68 80e

4 7b (Ph) H 4-BrC6H4 8d 69 79e

5 7b (Ph) H 4-ClC6H4 8e 63 70e

6 7c (4-CF3C6H4) H 4-NO2C6H4 8f 42 78e

a The reaction was performed on 0.4 mmol scale.b Isolated yield.
c Enantiomeric excess was determined by HPLC.d 5 mol % of2b, at 0°C,
and 48 h.e 5 mol % of 2c and 72 h.
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